Full disclaimer

This presentation reflects the direction Infor may take with regard to the products or services described herein, all of which is subject to change without notice. This presentation is not a commitment to you in any way and you should not rely on any content herein in making any decision. Infor is not committing to develop or deliver any specified enhancement, upgrade, product, service or functionality, even if such is described herein. Many factors can affect Infor's product development plans and the nature, content and timing of future product releases, all of which remain in the sole discretion of Infor. This presentation, in whole or in part, may not be incorporated into any agreement. Infor expressly disclaims any liability with respect to this presentation.

inforum 2017 **IoT and EAM**

Dilraj Kahai

Managing Partner, 21Tech

Kevin Price

Product Director, EAM

What is IoT?

1999!

"THE INTERNET OF THINGS IS ABOUT EMPOWERING COMPUTERS... SO THEY CAN SEE, HEAR AND SMELL THE WORLD FOR THEMSELVES"

Kevin Ashton Inventor of the term "Internet of Things"

Through the power of smart devices, people will not only consume data, but contribute observed data to the IoT through their phones and tablets as

Pattech The Key Benefit of IoT -Turning Data into Wisdom

The more data that is created, the better understanding and wisdom people can obtain.

Characteristics of IOT:

- Ordinary objects are instrumented
- Autonomic terminals are interconnected
- Pervasive services are intelligent

4 Major Layers:

- Object Sensing Layer
- Data Collection Layer
- Information Integration Layer
- Application Service Layer

Smart Cities

Why we focus on Cities infor

POPULATION EXPLOSION

PUBLIC SAFETY

TRANSPORTATION INFRASTRUCTURE

ENERGY CONSTRAINTS

ENVIRONMENTAL CONSTRAINTS

FOREFRONT OF GLOBAL **INNOVATION**

What is a SMART CITY?

A Smart City is about having sensor data that then gets used to create actions in a large scale over various applications

Transportation, waste management, law enforcement, buildings, governance, healthcare, and energy use to make them more efficient and improve the lives of citizens.

Smart City Market by Segments, Global 2025

Source: Frost & Sullivan analysis

infor Technological Solutions for Smart Cities (1 of 2)

Smart Energy	 Smart Grid automation & flexible distril Smart Metering management Renewable Integration & Micro Grid Real time Smart Grid software 						
Smart Transportation	 Transportation sensors Traffic management Integrated Transportation Intellig 						
Smart Water	 Water Network management Distribution management Leak Detection Storm Water & Urban Flooding manager 						

ution

time Smart Grid software eler information gent lighting

ement

infor Technological Solutions for Smart Cities (2 of 2)

Smart Buildings	 Energy efficiency Security solutions provided by temperat Connection to the Smart Grid Centralized system for control of temperat
Smart Communications	 Providing smart and green solutions in a Building an intelligent digital infrastructure information, services, and applications to departments in various areas
Smart Networks	 Providing IT network services ICT networks & fiber telecom infrastruct IoT-ready wireless sensor network solut

ure & movement sensors

ratures

daily activities ire for exchanging petween all municipal

ure tions

IOT MAKE SENSE WHEN YOU BLEND THE DATA

Creating New Compound Applications

By 2022, Gartner predicts that the IoT will save consumers and businesses \$1T a year in maintenance, services, and consumables.

Case Studies

infor

Intelligent Cities – Innovators

City	Smart Technology & Results
Amsterdam, Netherlands	Traffic reduction; energy conservation; improved secu
Stockholm, Sweden	Providing global fiber optic networks all over Stockho
Fujisawa, Japan	Fully automated buildings; smart street lighting; smar
Groening, Netherlands	Improvement of public transportation systems with reschedules
Norfolk, England	Improvement of data delivery services, data collection
Hudson Yards, New York	Smart Soil, Air quality, Traffic, Pedestrian Flow, Environ collection and Smart Temperature Control
Vienna, Austria	Increasing energy efficiency and climate protection; re
Plan IT Valley, Portugal	Deployment of 100,000,000 sensors
City of Tel-Aviv, Israel	Traffic Light Optimization, SLA Adherence and Warra
Santa Cruz, California	Analyzing the information of criminal actions to predic to find the maximum presence of police in needed reg
San Antonio, Texas	Streetlights adjust in stormy weather to improve visible

- urity level
- Im
- t meters; telepresence
- al-time access to locations and
- n, and system analysis for the
- onmental conditions, Rainwater
- eduction in carbon footprint
- nty Recovery
- ct the requirements of police and gions
- ility and reduce accidents

Case Study: Songdo, South Korea

- A \$35 billion, 1,500-acre private real estate development
- The city has cut energy and water use by 30% compared to what a similarly sized city would use without smart features
- Significantly reduced operating costs by regulating electricity and water usage in buildings
- There are no wires (underground). There are no garbage trucks (pneumatic process underground).
- In homes, parents can connect to schools and talk to teachers through telepresence.

Case Study: Barcelona, Spain

Focusing on transportation, water, energy, & waste

- Smart Parking
- 19,500 smart meters that monitor and optimize energy consumption
- Smart bins that monitor waste levels and optimize collection routes
- Utilization of evaluative traffic flow information to design bus networks and smarter traffic
- 1,100 lampposts have been transitioned to LED
- Sense and control of park irrigation, monitoring rain and humidity

Results

infor

- \$60+ million on water savings
- \$50+ million increase in parking revenues •
- 47,000 new jobs •
- \$37 million in additional savings

Case Study: Chicago, United States

- 20% more efficient in controlling the rodent population by using predictive analytics to determine which trash dumpsters are most likely to be full and attract more rats
- Installing 500 sensors throughout the city, providing the public with real-time, block-by-block environmental factors, such as traffic, air quality, temperature, and sound levels
- Imagine Project: 112 acres in Bronzeville to be turned into the first truly Smart City in the U.S., built from the ground up
- Tech Hub1871, Incubator for 500 IoT startups, hosts 1,000 events and 350 workshops annually

Challenges

Iot Challenges

- Massive Volume and Complexity
- Data Storage and Data Brokers
- Standardization
- Security and Privacy
- Integrated Mobility
- Adapting to Rapid Change
- 25 year EAM Sustainability Plan
- Need for Political Change Management

IoT Considerations – Regardless of Industry

New Data Sets

Areas of Business Effected

Data Management

o Supply Chain

o Distribution

o Assets

Source: Mario Morales, IDC

infor

Move to Near Real Time Predictive Maintenance

Work Force and Change Management

• Critical Management Driven Strategies

Copyright $\ensuremath{\mathbb{C}}$ 2016. Infor. All Rights Reserved. www.infor.com

PREDICTIONS:

- There will be a large-scale IoT security breach.
- IoT will simultaneously shrink and enrich mobile moments.
- Big Data Analytics: 35 ZB of data by 2020
- Department of IoT
- And...

Internet of Brains: Brain-to-Brain Interface

INTERNET OF THINGS

Only the TIP of an Iceberg

Infor IoT — Architecture

infor

Benefits

Where do you anticipate the biggest benefits of IoT in your business (select 3)?

IOT Elements

infor

What qualifies as complete IOT use case? There are many flavors but these four components are required

Measurement and reporting of relative changes in performance

EAM related benefit areas infor

Extend the use of successful product features, improve responsiveness to customer needs, reduce production costs, improve "design for" capabilities.

Optimize maintenance schedules, monitor tooling locations, provide proactive repairs/replacement, reduce energy use, and reduce scrap.

Improve space utilization, optimize energy use (HVAC, lighting), control employee access, manage alarms and security.

Optimize delivery routes, match shipments with demand patterns, maintain location visibility, trigger receivables, manage 3PLs, improve security, reduce claims.

Improve scheduling, monitor capacity, balance production, improve quality, reduce scrap, optimize inventories, improve utilization of labor and machines.

Optimize inventory levels by location, trigger 3rd party production capabilities, increase supply chain visibility, automate order placement and fulfillment.

Respond more quickly to customer needs, match production with demand, capitalize on important product features, optimize pricing and promotions.

Optimize service routes and schedules, manage repair parts and supplies, monitor product use and performance, provide proactive repairs, replacements and recalls.

Infor Confidential

Manage and Maintain

Production Efficiency/Quality Use case theme

Infor Confidential

infor

Manage Production

Operational Efficiency Use case theme

infor

Locate and Monitor Assets

Infor Confidential

Manage Services

This really works

Business challenges

- To capitalize on the availability of American Recovery Act Funds for Energy Efficiency and Conservation block grants by reducing energy consumption, emissions and operating costs for critical equipment in the government infrastructure.
- Des Moines WRA has achieved a benefit level nearly ten times what was used to justify the project and the returns just keep on growing. To do this the city pulled data from Infor EAM, SCADA, Meters, and PLC's to better understand how to operate and manage their equipment.

Solution – Infor EAM

Why Infor?

• Infor provided the expertise and systems required to manage an extended enterprise consisting a wide variety of equipment spread across a large metro area.

Infor Confidential

Profile

- As lowa's capital city, Des Moines is a hub of government action, business activity and cultural affairs.
- With a Metro population of 569,633, Des Moines is a bustling metropolis.
- The community offers quality schools, superb public services, and friendly neighborhoods.

Predictive analytics – A research case

Infor 10x³ - Internet of Things

Traditional maintenance approach

- Clients typically implement a maintenance strategy for their assets based on:
 - time-based maintenance schedules

infor

- usage based maintenance schedules (i.e.: vehicle mileage, hours of use, etc.)
- maintenance patterns based on time and/or usage

A new approach... infor

- Current maintenance schedules, while effective as a whole, do not take into account parameters such as:
 - driving patterns (i.e.: frequency of stop-starts)
 - variance of environmental factors (i.e.: operating temperatures, routes)
 - vehicle telematics
- This variability leads to failures/ineffectiveness that cannot be accurately predicted with regular maintenance.

Can we develop a predictive algorithm, to determine imminent failure by correlating dependent data?

Proof of Concept - Battery Predictive Model

- We developed a predictive algorithm, to determine when battery failure is imminent through correlation of dependent data
 - Cranking voltage pattern

infor

- Outside environment temperature
- Driving duration (as the battery is recharged)
- Frequency of stop-start activity (was the battery fully recharged)
- Vehicle telematics provide battery data related to pre-start, post-start and during the cranking activity or otherwise known as a battery cycle
- But in the process we realized we would collect a big dataset ! We need the right enabling technology !

infor

Collected readings of 14 vehicles for 1 week

Row Labels	R40253 F	R40258 F	R40681	R40758 F	R40773 Z	32234 2	232421 2	Z32542	Z32548	Z32549 Z	232555 Z	.32686 Z	.33152 Z	33155	
Acceleration forward or braking	307	393	484		730	51	100	299	129	97	376	269	133		
Acceleration side to side	307	393	484		730	51	100	299	129	97	376	269	133		
Acceleration up down	307	393	484		730	51	100	299	129	97	376	269	133		
Accelerometer Calibrated (1=calibrated)						1		3		14		4			
Cranking Voltage	558	546	468	93	661	312	545	577	346	300	557	869	708	827	
Device power change (1=powered)				1		2		6	1	28		8		2	
Device Total Fuel	98	116	153	18	140	61	148	101	63	64	114	158	146	162	
Device Total Idle Fuel	98	116	153	18	140	61	148	101	63	64	114	158	146	162	
Driver Seatbelt (1=unbuckled)				1		75	203	159	99	84	188	269	210	179	
Engine Coolant Temperature	179	180	297	48	287	53	229	196	101	116	198	234	209	222	
Engine Speed	1219	1810	4707	274	2488	481	1970	4498	961	1157	1615	3964	1585	1593	
Ford ISO Protocol Detected (1=detected)	49	58	76	8	70										average
Fuel Level	8	9	16	5	18	6	11	28	10	43	6	42	20	23	average
Gear Position	40	28	60		68	14	36	21	56	40	60	40	32		1 670 readings
GO Device Voltage	306	406	501	51	409	114	338	275	147	183	324	399	415	402	14,070 readings
Headlight Light Status (1=On)						1		3		12		4		1	
Ignition	100	117	156	20	142	62	152	106	66	78	116	162	152	165	I ber week and
OBD\CAN 11BIT 500K Engine Protocol Detected	49	58	76	8	70	31	74	51	31	26	57	77	73	80	
Odometer	98	116	142	17	140	42	142	99	56	55	114	144	142	146	l ner vehicle
Parking Brake (1=on)						1		2		9		4		1	
Passenger Occupancy (1=occupied)				1		1		3		9		2		1	
Passenger Seatbelt Violation(1=unbuckled)				1		1		3		9		2		1	\uparrow
PositionValid	2		34	6	4		58	36	6	26	4	22	6	28	
Total Trip Fuel Used	49	58	77	10	70	29	74	51	31	37	57	80	73	81	
Total Trip Idle Fuel Used	48	50	76	10	62	24	71	52	29	35	57	73	71	67	
Vehicle Active	98	116	153	18	140	61	148	103	63	64	114	158	146	161	
Grand Total	3920	4963	8597	608	7099	1586	4647	7371	2516	2744	4823	7680	4533	4304	

Expected telematics data volume

- 17,418 class 1-2 trucks
- 3,973 class 3-6 trucks

21,391 vehicles * 4,670 readings/week * 52 weeks/year * 3 years = 15.6 billion readings !!!

This data volumes would require Big Data analytics ...

Proof of Concept: cloud architecture

Real time predictive analytics of telematics and device/sensor data

Pre-conditions:

- Repository in the Cloud
- Infor EAM, Infor Ming.le and Infor ION in the Cloud

Process:

- Upload in real-time raw sensor data
- Using a predictive analytics library (PAL) we executed in real-time a battery life predictive model
- Model results generate alerts that are sent back to Infor EAM / Infor Ming.le via Infor ION

Use cases:

- Telematics engine sensor captures, on engine startup, the instantaneous battery voltage. Through an anomaly detection model, a weak battery is identified and alerted.
- Analysis of the battery cranking voltage, cross-referenced with vehicle stops and environmental factors (outside temperature) for increased effectiveness of the predictive model

